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INTERNET COMMUNICATIONS: AN OVERVIEW

IP:

 Data is sent from one machine to another in a packet, with a
destination address and a source address in a standardized
format (a “protocol”).

 The packets of data have to go through a number of
intermediary machines, called routers, to reach their
destination.

 An IP packet is a block of data along with the same kind of
information like the name and address of the server, and so on.



 If an IP packet ever gets transmitted across your local

wired network via an Ethernet cable—the cable that

connects your home broadband router or your office

local area network (LAN) to a desktop PC—then the

whole packet will get bundled up into another type of

envelope, an Ethernet Frame, which adds additional

information.

IP contd. 



TCP

 The simplest transport protocol on the Internet,

Transmission Control Protocol (TCP) is built on top of the

basic IP protocol and adds sequence numbers,

acknowledgements, and retransmissions.

 This means that a message sent with TCP can be

arbitrarily long and give the sender some assurance that

it actually arrived at the destination intact.

 Because the combination of TCP and IP is so useful, many

services are built on it in turn, such as email and the HTTP

protocol that transmits information across the World

Wide Web (WWW).



The IP Protocol Suite (TCP/IP)

 The combination of TCP and IP is often referred as “TCP/IP”

to describe a whole suite or stack of protocols layered on

top of each other, each layer building on the capabilities of

the one below.

 The low-level protocols at the link layer manage the transfer

of bits of information across a network link by

 an Ethernet cable,

 by WiFi,

 or across a telephone network,

 or even by short-range radio standards such as IEEE

802.15.4 designed to carry data between devices carried by

an individual (PAN).



The IP Protocol Suite (TCP/IP) contd.

 The Internet layer then sits on top of these various links and

abstracts away the gory details in favor of a simple

destination address.

 Then TCP, which lives in the transport layer, sits on top of IP

and extends it with more sophisticated control of the

messages passed.

 Finally, the application layer contains the protocols that

deal with fetching web pages, sending emails, and Internet

telephony.

 Of these, HTTP is the most ubiquitous for the web, and

indeed for communication between Internet of Things

devices.



UDP 

 In UDP each message may or may not arrive.

 No handshake or retransmission occurs, nor is there any

delay to wait for messages in sequence.

 These limitations make TCP preferable for many of the tasks

that Internet of Things devices will be used for.

 The lack of overhead, makes UDP useful for applications

such as streaming data, Voice over IP (VoIP)—computer-

based telephony, such as Skype.

 UDP is also the transport for some very important protocols

which provide common, low-level functionality, such as

DNS and DHCP, which relate to the discovery and resolution

of devices on the network.



Fig: The Internet Protocol suite.



IP Addresses

 IP addresses are numbers.

 In Internet Protocol version 4 (IPv4), almost 4.3 billion IP

addresses are possible—4,294,967,296 to be precise, or 232.

 IP addresses are usually written as four 8-bit numbers

separated by dots (from 0.0.0.0 to 255.255.255.255)—for

example, 192.168.0.1 (which is often the address of your

home router) or 8.8.8.8 (which is the address of one of

Google’s DNS servers).

 This “dotted quad” is still exactly equivalent to the 32-bit

number.

 8.8.8.x — One of several IP ranges assigned to Google.

 192.168.x.x — A range assigned for private networks.

 Your home or office network router may well assign IP

addresses in this range. 10.x.x.x — Another private range.



Every machine on the Internet has at least one IP address.

That means every computer, every network-connected

printer, every smartphone, and every Internet of Things

device has one.

The private ranges such as 192.168.x.x offer one mitigation

to this problem.

Your home or office network might have only one publicly

visible IP address.

However, you could have all the IP addresses in the range

192.168.0.0 to 192.168.255.255 (2^16 = 65,536 addresses)

assigned to distinct devices.

A better solution to this problem is the next generation of

Internet Protocol, IPv6.

IP Addresses contd.



DNS
 Although computers can easily handle 32-bit numbers, most

humans to forget.

 The Domain Name System (DNS) helps our feeble brains

navigate the Internet.

 Domain names, such as the following, are familiar to us from

the web, or perhaps from email or other services:

 google.com

 bbc.co.uk

 wiley.com

 arduino.cc



 Each domain name has a top-level domain (TLD), like .com

or.uk, which further subdivides into .co.uk and .gov.uk, and

so on, to find more information about the domains within

it;

 for example, .com knows where to find google.com and

wiley.com.

 For example, the DNS records for .google.com know where

to point you for the following:

 www.google.com mail.google.com calendar.google.com

 But DNS can also point to other services on the Internet—

for example:

 pop3.google.com — For receiving email from Gmail

 smtp.google.com — For sending email to Gmail

 ns1.google.com — The address of one of Google’s many
DNS servers

DNS contd.

http://www.google.com/


Static IP Address Assignment
If you have bought a server-hosting package from an Internet service provider 
(ISP), you might typically be given a single IP address. These were ranges of 
different sizes of IP addresses, typically separated into “classes” of 8 bits, 16 bits, 
or 24 bits:0

Class A — From 0.x.x.x
Class B — From 128.0.x.x
Class C — From 192.0.0.x

With the explosion of the number of devices connecting to the Internet, the 
scheme has been superseded since 1993 by Classless Inter-Domain Routing 
(CIDR), which allows you to specify exactly how many bits of the address are fixed. 
So, the class A addresses we mentioned above would be equivalent to 0.0.0.0/8, 
while a class C might be 208.215.179.0/24.
For example, you saw previously that Google had the range 

8.8.8.x (which is equivalent to 8.8.8.0/24 in CIDR notation)
Google has chosen to give one of its public DNS servers the address 8.8.8.8 from 
this range, largely because this address is easy to remember.



Static IP Address Assignment contd.

 In many cases, however, the system administrator simply assigns server numbers in 
order. 

 The administrator makes a note of the addresses and updates DNS records and so on to 
point to these addresses. We call this kind of address static because once assigned it 
won’t change again without human intervention.

 Now consider your home network: every time you plug a desktop PC to your router, 
connect your laptop or phone to the wireless, or switch on your network-enabled 
printer, this device has to get an IP address (often in the range 192.168.0.0/16). 

 You could assign an address sequentially yourself, but the typical person at home isn’t a 
system administrator and may not keep thorough records.

 If your brother, who used to use the address 192.168.0.5 but hasn’t been home for 
ages, comes back to find that your new laser printer now has that address, he won’t be 
able to connect to the Internet.



DYNAMIC IP ADDRESS ASSIGNMENT
 we don’t typically have to choose an IP address for every device we connect to a 

network.

 Instead, when you connect a laptop, a printer, or even a Twitter-following bubble 
machine, it can request an IP address from the network itself using the Dynamic Host 
Configuration Protocol (DHCP).

 When the device tries to connect, instead of checking its internal configuration for its 
address, it sends a message to the router asking for an address.

 The router assigns it an address. This is not a static IP address which belongs to the 
device indefinitely; rather, it is a temporary “lease” which is selected dynamically 
according to which addresses are currently available. 

 If the router is rebooted, the lease expires, or the device is switched off, some other 
device may end up with that IP address.

 This means that you can’t simply point a DNS entry to a device using DHCP.

 In general, you can rely on the IP address probably being the same for a given work 
session, but you shouldn’t hard-code the IP address anywhere that you might try to use 
it another time, when it might have changed.



DYNAMIC IP ADDRESS ASSIGNMENT contd.
 Even the simplest computing devices such as the Arduino board, which we look at in 

Chapter 5, can use DHCP. 

 Although the Arduino’s Ethernet library allows you to configure a static IP address, you 
can also request one via DHCP. 

 Using a static address may be fine for development (if you are the only person connected 
to it with that address), but for working in groups or preparing a device to be distributed 
to other people on arbitrary networks, you almost certainly want a dynamic IP address.



IPV6
 When IP was standardized, few could have predicted how quickly the 4.3 billion 

addresses that IPv4 allowed for would be allocated. 

 The expected growth of the Internet of Things can only speed up this trend.

 If your mobile phone, watch, MP3 player, augmented reality sunglasses, and telehealth 
or sports-monitoring devices are all connected to the Internet, then you personally are 
carrying half a dozen IP addresses already.

 Perhaps you have a dedicated wallet server for micropayments? A personal web server 
that contains your contact details and blog? One or more webcams recording your day? 
Perhaps rather than a single health monitoring device, you have several distributed 
across your person, with sensors for temperature, heart rate, insulin levels, and any 
number of other stimuli.

 At home you would start with all your electronic devices being connected. 

 But beyond that, you might also have sensors at every door and window for security. 
More sensitive sound sensors to detect the presence of mice or beetles. 

 Other sensors to check temperature, moisture, and airflow levels for efficiency.

 It is hard to predict what order of number of Internet connected devices a household 
might have in the near future. Tens? Hundreds? Thousands?



IPV6
 Enter IPv6, which uses 128-bit addresses, usually displayed to users as eight groups of 

four hexadecimal digits—for example, 2001:0db8:85a3:0042 :0000:8a2e:0370:7334.

 The address space (2^128) is so huge that you could assign the same number of 
addresses as the whole of IPv4 to every person on the planet and barely make a dent in 
it. 

 The new standard was discussed during the 1980s and finally released in 1996. In 2013, it 
is still less popular than IPv4. You can find many ways to work around the lack of public IP 
addresses using subnets, but there is a chicken-and-egg problem with getting people to 
use IPv6 without ISP support and vice versa. 

 It was originally expected that mobile phones connected to the Internet (another huge 
growth area) would push this technology over the tipping point.

 In fact, mobile networks are increasingly using IPv6 internally to route traffic. Although 
this infrastructure is still invisible to the end user, it does mean that there is already a lot 
of use below the surface which is stacked up, waiting for a tipping point.



IPv6 and Powering Devices
• We can see that an explosion in the number of Internet of Things devices will almost 

certainly need IPv6 in the future. 

• But we also have to consider the power consumption of all these devices. We know that 
we can regularly charge and maintain a small handful of devices. At any one moment, we 
might have a laptop, a tablet, a phone, a camera, and a music player plugged in to 
charge.

• The constant juggling of power sockets, chargers, and cables is feasible but fiddly. The 
requirements for large numbers of devices, however, are very different.

• The devices should be low power and very reliable, while still being capable of 
connecting to the Internet. Perhaps to accomplish this, these devices will team together 
in a mesh network. 

• This is the vision of  6LoWPAN, an IETF working group proposing solutions for “IPv6 over 
Low power Wireless Personal Area Networks”, using technologies such as IEEE 802.15.4. 
While a detailed discussion of 6LoWPAN and associated technologies is beyond the scope 
of this book, we do come back to many related issues, such as maximizing battery life in 
Chapter 8 on embedded programming.



Conclusion on IPv6
• Although IPv6 is, or will be, big news, we do not go into further detail in this book. 

• In 2013, you can find more libraries, more hardware, and more people that can support 
IPv4, and this is what will be most helpful when you are moving from prototype to 
production on an Internet of Things device.

• Even though we are getting close to the tipping point, existing IPv4 services will be able 
to migrate to IPv6 networks with minimal or possibly no rewriting.

• If you are working on IPv6 network infrastructure or are an early adopter of 6LoWPAN, 
you will have specific knowledge requirements that are beyond the current scope of this 
book.



MAC ADDRESSES
• As well as an IP address, every network-connected device also has a MAC address, which 

is like the final address on a physical envelope in our analogy.

• It is used to differentiate different machines on the same physical network so that they 
can exchange packets. This relates to the lowest-level “link layer” of the TCP/IP stack.

• Though MAC addresses are globally unique, they don’t typically get used outside of one 
Ethernet network (for example, beyond your home router). So, when an IP message is 
routed, it hops from node to node, and when it finally reaches a node which knows 
where the physical machine is, that node passes the message to the device associated 
with that MAC address.

• MAC stands for Media Access Control. It is a 48-bit number, usually written as six groups 
of hexadecimal digits, separated by colons—for example:

01:23:45:67:89:ab

• Most devices, such as your laptop, come with the MAC address burned into their 
Ethernet chips.

• Some chips, such as the Arduino Ethernet’s WizNet, don’t have a hard-coded MAC 
address, though.



MAC ADDRESSES contd.

• This is for production reasons: if the chips are mass produced, they are, of course, 
identical. So they can’t, physically, contain a distinctive address. 

• The address could be stored in the chip’s firmware, but this would then require every 
chip to be built with custom code compiled in the firmware.

• Alternatively, one could provide a

• simple data chip which stores just the MAC address and have the WizNet chip read that. 

• Obviously, most consumer devices use some similar process to ensure that the machine 
always starts up with the same unique MAC address. The Arduino board, as a low-cost 
prototyping platform for developers, doesn’t bother with that nicety, to save time and 
cost. 

• Yet it does come with a sticker with a MAC address printed on it. Although this might 
seem a bit odd, there is a good reason for it: that MAC address is reserved and therefore 
is guaranteed unique if you want to use it. For development purposes, you can simply 
choose a MAC address that is known not to exist in your network.

• WizNet is a Korean manufacturer which specializes in networking chips for embedded 
devices. Many popular microcontrollers which we look at use these chips.



TCP AND UDP PORTS
• A messenger with a formal invitation for a wealthy family of the Italian Renaissance 

would go straight to the front entrance to deliver it.

• A grocer delivering a crate of the first artichokes of the season would go instead to a 
service entrance, where the crate could be taken quickly to the kitchen without getting in 
the way of the masters.

• The following engraving, by John Gilbert, is taken from Shakespeare’s Romeo and Juliet. 
This reminds us that the house of the Capulets has at least one other entrance—on 
Juliet’s balcony.

• If Romeo wants to see his beloved, that is the only way to go. If he climbs up the wrong 
balcony, he’ll either wait outside (the nurse is fast asleep and can’t hear his knocks) or 
get chased away by the angry father. 

• Similarly, when you send a TCP/IP message over the Internet, you have to send it to the 
right port. TCP ports, unlike entrances to the Capulet house, are referred to by numbers 
(from 0 to 65535).



Romeo and Juliet, Act I, Scene 2, by John Gilbert, before 
1873.



AN EXAMPLE: HTTP PORTS

• If your browser requests an HTTP page, it usually sends that request to port 80. 

• The web server is “listening” to that port and therefore replies to it. If you send an HTTP 
message to a different port, one of several things will happen:

o Nothing is listening to that port, and the machine replies with an “RST” packet (a control 
sequence resetting the TCP/IP connection) to complain about this.

o Nothing is listening to that port, but the firewall lets the request simply hang instead of 
replying. The purpose of this (lack of) response is to discourage attackers from trying to 
find information about the machine by scanning every port. (Imagine Romeo knocking on 
the sleeping nurse’s window.)

o The client has decided that trying to send a message to that port is a bad idea and 
refuses to do it. Google Chrome does this for a fairly arbitrary list of “restricted ports”.

o The message arrives at a port that is expecting something other than an HTTP message. 
The server reads the client’s response, decides that it is garbage, and then terminates the 
connection (or, worse, does a nonsensical operation based on the message).



AN EXAMPLE: HTTP PORTS contd.
• Ports 0–1023 are “well-known ports”, and only a system process or an administrator can 

connect to them.

• Ports 1024–49151 are “registered”, so that common applications can have a usual port 
number. However, most services are able to bind any port number in this range.

• The Internet Assigned Numbers Authority (IANA) is responsible for registering the 
numbers in these ranges. 

• People can and do abuse them, especially in the range 1024–49151, but unless you 
know what you’re doing, you are better off using either the correct assigned port or (for 
an entirely custom application) a port above 49151.

• You see custom port numbers if a machine has more than one web server; for example, 
in development you might have another server, bound to port 8080:

http://www.example.com:8080

• Or if you are developing a website locally, you may be able to test it with a built-in test 
web server which connects to a free port. For example, Jekyll (the lightweight blog 
engine we are using for this book’s website) has a test server that runs on port 4000:

http://localhost:4000

http://www.example.com:8080/
http://localhost:4000/


AN EXAMPLE: HTTP PORTS contd.

• The secure (encrypted) HTTPS usually runs on port 443. So these two URLs are 
equivalent:

https://www.example.com

https://www.example.com:443

https://www.example.com/
https://www.example.com/


OTHER COMMON PORTS

• Even if you will rarely need a complete catalogue of all port numbers for services, you 
can rapidly start to memorize port numbers for the common services that you use daily. 
For example, you will very likely come across the following ports regularly:

◾ 80 HTTP

◾ 8080 HTTP (for testing servers)

◾ 443 HTTPS

◾ 22 SSH (Secure Shell)

◾ 23 Telnet

◾ 25 SMTP (outbound email)

◾ 110 POP3 (inbound email)

◾ 220 IMAP (inbound email)

• All of these services are in fact application layer protocols.



APPLICATION LAYER PROTOCOLS
• We have seen examples of protocols at the different layers of the TCP/IP stack, from the 

low-level communication across wired Ethernet, the low-level IP communication, and 
the TCP transport layer.

• Now we come to the highest layer of the stack, the application layer. This is the layer 
you are most likely to interact with while prototyping an Internet of Things project. 

• It is useful here to pause and flesh out the definition of the word “protocol”. A protocol 
is a set of rules for communication between computers. 

• It includes rules about how to initiate the conversation and what format the messages 
should be in. It determines what inputs are understood and what output is transmitted. 

• It also specifies how the messages are sent and authenticated and how to handle (and 
maybe correct) errors caused by transmission.

• Bearing this definition in mind, we are ready to look in more detail at some application 
layer protocols, starting with HTTP.



HTTP
• The Internet is much more than just “the web”, but inevitably web services carried over 

HTTP hold a large part of our attention when looking at the Internet of Things.

• HTTP is, at its core, a simple protocol. The client requests a resource by sending a 
command to a URL, with some headers.

• We use the current version of HTTP, 1.1, in these examples. Let’s try to get a simple 
document at http://book.roomofthings.com/hello.txt . You can see the result if you 
open the URL in your web browser.

• A browser showing “Hello World!”

http://book.roomofthings.com/hello.txt


HTTP contd.

• But let’s look at what the browser is actually sending to the server to do this. The basic 
structure of the request would look like this:

GET /hello.txt HTTP/1.1 

Host: book.roomofthings.com  

• Notice how the message is written in plain text, in a human-readable way (this might 
sound obvious, but not all protocols are; the messages could be encoded into bytes in a 
binary protocol, for example).

• We specified the GET method because we’re simply getting the page. We go into much 
more detail about the other methods in Chapter 7, “Prototyping Online Components”. 
We then tell the server which resource we want (/hello.txt) and what version of the 
protocol we’re using.

• Then on the following lines, we write the headers, which give additional information 
about the request. 

• The Host header is the only required header in HTTP 1.1. 

• It is used to let a web server that serves multiple virtual hosts point the request to the 
right place.



HTTP contd.
• Well-written clients, such as your web browser, pass other headers. For example, my 

browser sends the following request:

GET /hello.txt HTTP/1.1

Host: book.roomofthings.com

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Charset: UTF-8,*;q=0.5

Accept-Encoding: gzip,deflate,sdch

Accept-Language :en-US,en;q=0.8

Cache-Control: max-age=0

Connection: keep-alive

If-Modified-Since: Tue, 21 Aug 2012 21:41:47 GMT

If-None-Match: “8a25e-d-4c7cd7e3d1cc0”

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)

AppleWebKit/537.1

(KHTML, like Gecko) Chrome/21.0.1180.77 Safari/537.1



HTTP contd.
• The Accept- headers tell the server what kind of content the client is willing to receive 

and are part of “Content negotiation”. For example, if I had passed

Accept-Language: it,en-US,en;q=0.8

• the server might agree to give me the Italian version of the site instead, reverting to 
English only if it doesn’t have that page in Italian.

• The other fields give the server more information about the client (for statistics and for 
working around known bugs) and manage caching and so on.

• Finally, the server sends back its response. We already saw what that looked like in the 
browser, but now let’s look at what the full request/response looks like if we speak the 
HTTP protocol directly. (Obviously, you rarely have to do this in real life.

• Even if you are programming an Internet of Things device, you usually have access to 
code libraries that make the request, and reading of the response, easier.)



HTTP contd.

The request/response cycle.



HTTP contd.
• Notice how we connect using the telnet command to access port 80 directly. Now that we 

can see the full request, it looks at first sight as if we’re repeating some information:

• the hostname book.roomofthings.com. But remember that DNS will resolve the name to 
an IP address. All the server sees is the request; it doesn’t know that the command that 
started the request was telnet book.roomofthings.com 80. 

• If the DNS name foo.example.com also pointed at the same machine, the web server 
might want to be able to respond in a different way to http://foo. example.com/hello.txt. 
The server replies, giving us a 200 status code (which it summarizes as “OK”; that is, the 
request was successful).

• It also identifies itself as an Apache server, tells us the type of content is text/plain, and 
returns information to help the client cache the content to make future access to the 
resource more efficient. 

• You may be wondering where the Hypertext part of the protocol is. All we’ve had back so 
far is text, so shouldn’t we be talking HTML to the server? Of course, HTML documents are 
text documents too, and they’re just as easy to request.

• Notice how, for the server, replying with a text file or an HTML document is exactly the 
same process! The only difference is that the Content-Type is now text/html. It’s up to the 
client to read that markup and display it appropriately.

http://foo/


HTTP contd.

The request/response cycle with HTML.  
We look at more features of HTTP over the course of this book, but
everything is based around this simple request/response cycle! In Chapter 7,
we look at web APIs (which are, arguably, even higher-level protocols that
just happen to sit on top of HTTP) while deepening our understanding of
HTTP.



HTTPS: ENCRYPTED HTTP
• We have seen how the request and response are created in a simple text format.

• If someone eavesdropped your connection (easy to do with tools such as Wireshark if you 
have access to the network at either end), that person can easily read the conversation.

• In fact, it isn’t the format of the protocol that is the problem: even if the conversation 
happened in binary, an attacker could write a tool to translate the format into something 
readable.

• Rather, the problem is that the conversation isn’t encrypted. The HTTPS protocol is 
actually just a mix-up of plain old HTTP over the Secure Socket Layer (SSL) protocol. 

• An HTTPS server listens to a different port (usually 443) and on connection sets up a 
secure, encrypted connection with the client (using some fascinating mathematics and 
clever tricks such as the “Diffie–Hellman key exchange”). 

• When that’s established, both sides just speak HTTP to each other as before!

• This means that a network snooper can find out only the IP address and port number of 
the request (because both of these are public information in the envelope of the 
underlying TCP message, there’s no way around that). 

• After that, all it can see is that packets of data are being sent in a request and packets are 
returned for the response.



OTHER APPLICATION LAYER PROTOCOLS

• All protocols work in a roughly similar way. Some cases involve more than just a two-way 
request and response.

• For example, when sending email using SMTP, you first need to do the “HELO 
handshake” where the client introduces itself with a cheery “hello” (SMTP commands are 
all four letters long, so it actually says “HELO”) and receives a response like “250 Hello 
example. org pleased to meet you!” In all cases, it is worth spending a little time 
researching the protocol on Google and Wikipedia to understand in overview how it 
works.

• You can usually find a library that abstracts the details of the communication process, 
and we recommend using that wherever possible.

• Bad implementations of network protocols will create problems for you and the servers 
you connect to and may result in bugs or your clients getting banned from useful 
services. 

• So, it is generally better to use a well-written, well-debugged implementation that is used 
by many other developers.

• In general, the only valid reasons for you, the programmer, to ever speak to any 
application layer protocol directly (that is, without using a library) are



OTHER APPLICATION LAYER PROTOCOLS contd.
• There is no implementation of the protocol for your platform (or the implementation is 

inefficient, incomplete, or broken).

• You want to try implementing it from scratch, for fun.

• You are testing, or learning, and want to make a particular request easily.




